XEUS / CON-X

Accreting Massive Black Holes

AC Fabian IoA Cambridge UK

X-ray - H_

Rapid variability in AGN

Emission dominated by innermost regions

Transverse Doppler shift
Beaming

Gravitational redshift

Reflection from photoionized matter

(Ross & Fabian 93, 04)

Vary spectral index

Very Broad Line ⇒ Spinning BH (more from Chris Reynolds)

Broad Line ⇒ Probably spinning BHs

Stacked spectra of 53 Type I AGN Streblyanska et al (2005)

aca Guanthan Wasincan's talle

Galactic Black Hole GX339-4 see Jon Miller's talk

Very Broad Line ⇒ spinning BH

NO Broad Line

Ark 120

Vaughan et al 04

How does it vary?

f10

Difference spectrum: (High flux)-(Low flux) is a power-law modified by absorption

So we know which large scale features are due to absorption

Schematic picture of the two-component model

520 ks Chandra HEG observation of MCG-6-30-15 Young et al 2005 (submitted) compared with XMM-Newton spectrum

Narrow Fe XXV and XXVI absorption found v=2000 km/s blueshift

Constrains absorption by highly ionized species

(Wider discussion on absorption issues by Massimo Cappi)

But, how can we produce a reflection-dominated spectrum in which the power law is only a minor contribution?

How is this related to the extreme relativistic blurring that is required to describe the data?

possible solution: the light bending model (Miniutti & Fabian 04)

PLC and Fe line variability induced by light bending when an intrinsically constant source changes height

The Fe line varies with much smaller amplitude

Simple height changing model

Is it absorption or a line?

Variability

RMS fractional variability spectrum

Rapid spectral variability of NLS1 explained if source within 6m

1H0439-577

Data from KA Pounds

(Fabian, Miniutti, Iwasawa & Ross 05)

In lowest state the spectrum is almost completely reflection-dominated

The reflection component requires strong relativistic blurring (and implies the disc extends down to 2 grav radii)

Difference spectrum is power law

Conclusions on broad Fe line

- A consistent model for the broad iron lines seen in some Seyferts and BHC
- involves both
 - strong gravitational redshift
 - and light bending
- indicating that much of the reflection and thus primary emission is occurring within a few gravitational radii of the event horizon
- Good evidence from several objects that BH is spinning (Kerr solution necessary)
- · (more on spin from Chris Reynolds)

The Future

 ASTRO-E2 - will sort out absorption vs emission structures

NEXT - reflection humps

 Spectral Variability - reflection component in MCG-6 does vary on short timescales

(Iwasawa+, Reynolds+, Ponti+) but difficult to characterize with XMM-Newton

XEUS / CON-X have the potential to maker MAJOR advances

```
Brightest lines are about 2 ph m<sup>-2</sup> s<sup>-1</sup>
   Need sources with high L/L<sub>Edd</sub> for broad lines
   (NLS1/GXRB)
Typically means
   •BH mass of 106-108 Msun
   •or timescales of 100s to 10<sup>4</sup>s.
Therefore to study such BH on their
   intrinsic variability
   light crossing
                                timescales
   inner orbital period
```


 $F(2-10)=2x10^{-12}$; M=1.2x10⁸; i=30deg Orbiting spot at 2.4r_g, P=18ks Simulation by Giovanni Miniutti

The central engine of the ACCRETING BLACK HOLE, which is responsible for the MOST POWERFUL 'steady' sources in the Universe and is assuming a central role in GALAXY FORMATION, is accessible to detailed study by X-RAY OBSERVATIONS